Math 10a
Practice Midterm 2 #2

1. In summation notation, write down the left Riemann sum estimate for fo (1 —x)dx
using 1000 intervals.

2. (a)

TR 1 e
1000 — 1000 1000 )

What is the Taylor series for In(z) centered at x = 17
Differentiating f(x) = In(z):
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We note a pattern

Hence

k=0
Note that we have to be careful to split off the £ = 0 term, since our formula for
the derivative doesn’t work for k£ = 0.

What is the radius of the convergence of the series from part (a)?
I see factorials, so I perform the ratio test:
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so the series converges for |x — 1| < 1, diverges for |x — 1| > 1, so the radius of
convergence is 1.
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(c) Write down a series of rational numbers converging to In(1/3).
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Since the series coverges for x =

3. (a) Suppose giraffe neck lengths are normally distributed with mean of 6 feet and a
standard deviation of 6 inches. What is the probability, given a randomly selected
giraffe, that its neck is shorter than 5 feet?

5 feet is two standard deviations below the mean, and the area under the bell
curve to the left of —2 standard deviations is .025. Hence the answer is 2.5%.

(b) Suppose giraffe tongue lengths are normally distributed with a mean of 20 inches
(1) and a standard deviation of 3 inches. What is the probability that a randomly
selected giraffe will have a tongue of length between 20 and 23 inches?

20 is the mean and 23 is one standard deviation above the mean. Hence we're
looking at the area under a bell curve between the mean and one standard de-
viation above the mean. This is half the area between +1 standard deviations,

hence is 34%.

4. Compute the following integrals:
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See the lecture slides.



/sin(ﬁ)dw

Ldr = g—i = dx = 2udu

u=+/t, du= 7=

N =

= Z/usin(u)du: 2/u%(—cos(u))du

= —2u Cos(u)+2/cos(u) = —2u cos(u)+2sin(u)+C = —2y/x cos(v/x)+2 sin(y/x)+C.

5. Compute the following integrals:
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6. Recall that the uniform distribution from 0 to 1 is defined to be one whose pdf is

Fla) = {1 z € [0,1]

0 otherwise

+ 2/ cos(x)dx = m.
0 0

What is the cdf of this uniform distribution? Sketch a graph.

I'll leave it to you to sketch the graph. The cdf F(z) is the area under the pdf to the
left of x, so
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